Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Bischof, H; Cisarova, K; Burgstaller, S; Schwerer, M; Absenger-Novak, M; Jost, PJ; Malli, R; Graier, WF; Lukowski, R.
Targeting hexokinase 2 to induce breast cancer cell senescence.
Br J Pharmacol. 2025; Doi: 10.1111/bph.70282
PubMed FullText FullText_MUG

 

Autor*innen der Med Uni Graz:
Malli Roland
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
BACKGROUND AND PURPOSE: Hexokinase 2 (HK2) is a key enzyme linked to high tumour cell proliferation. Its inhibitors such as 3-bromopyruvic acid (3-BP) induce cancer cell death, highlighting HK2 modulation as potential anti-cancer treatment. However, standard chemotherapies often cause the emergence of senescent cancer cells, which goes along with cell metabolic reprogramming and treatment failure. This study explores whether targeting HK2 can induce cancer cell senescence and whether metabolic changes in senescent cancer cells are tied to the cellular HK2 status. EXPERIMENTAL APPROACH: The expression of hexokinase 1 (HK1) and HK2 was assessed using immunoblot and immunofluorescence analysis in cell lines and in primary murine breast cancer (BC) cells. The senescence-inducing potential of HK2 inhibition and the effect of chemotherapy-induced senescence on HK1 and HK2 expression were assessed. Cell-based approaches were complemented by analysing single-cell RNA sequencing data from BC patients. KEY RESULTS: BC cell sensitivity to HK2 inhibition did not correlate with HK2 expression levels. Consistently, senescence was linked to a decrease in HK2 and an increase in HK1 expression. Moreover, genetic knockdown of HK2 induced senescence, indicating that a change in the HK2/HK1 ratio drives, rather than results, from cellular senescence. This shift in HK2/HK1 ratio was confirmed in single-cell RNA sequencing data of BC biopsies. CONCLUSIONS AND IMPLICATIONS: Expressional shifts in the HK2/HK1 ratio may serve as a novel marker for BC cell senescence. Whereas targeting HK2 shows promise in untreated cancers, senescence-inducing anti-cancer therapies may limit the effectiveness of HK2-targeted treatments in pre-treated cancer patients.

© Med Uni Graz Impressum