Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Wieland, MAB; Schwaminger, SP; Elinkmann, M; Stüger, PM; Feldmann, J; Clases, D; de Vega, RG.
Ozone-mediated breakdown of microplastics in aqueous environments
J ANAL ATOM SPECTROM. 2025; Doi: 10.1039/d5ja00226e [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Schwaminger Sebastian
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Advanced oxidation processes (AOPs) are increasingly adopted in wastewater treatment to degrade persistent pollutants, including emerging targets such as microplastics (MPs). These particles enter aquatic systems through the fragmentation of bulk plastics and, as their size decreases, exhibit enhanced mobility, surface reactivity, and biological uptake potential. However, the efficiency of AOPs in removing MPs and their nanoscale derivatives (nanoplastics, NPs) remains poorly understood, partly due to the lack of suitable analytical tools. Small MPs and NPs often occur at trace levels and are obscured by colloidal and dissolved background in complex matrices. Moreover, growing evidence suggests that AOPs may promote fragmentation rather than complete degradation. Thus, the focus of this study is to investigate ozone as a reactive agent for MP degradation, using single-particle inductively coupled plasma - mass spectrometry (SP ICP-MS). The formation of nanoscale plastics was qualitatively assessed using dynamic light scattering (DLS). The degradation behaviour of primary MPs such as polystyrene (PS) and polytetrafluoroethylene (PTFE), and secondary MPs generated from bulk poly(methyl methacrylate) (PMMA) and polyvinyl chloride (PVC) was assessed. Ozone exposure led to progressive mass reduction for PS and PMMA, while PTFE and PVC showed greater oxidation resistance. SP ICP-MS revealed detailed transformations in mass, which were projected into size distributions, while DLS confirmed the formation of nanoscale particles in all cases. These findings highlight that ozone-based AOPs can promote nanoplastic formation, underscoring the need to evaluate treatment efficiency not only by particle removal but also with regard to the nature and behaviour of transformation products. The combined use of SP ICP-MS and DLS offers unique insights into MP degradation and the unintended formation of NPs during oxidative treatment, an aspect of particular relevance as AOPs are increasingly integrated into wastewater treatment under the revised European Urban Wastewater Treatment Directive (2024/3019).

© Med Uni Graz Impressum