Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Schatz, C; Knabl, L; Lee, HK; Seeboeck, R; von, Laer, D; Lafon, E; Borena, W; Mangge, H; Prüller, F; Qerimi, A; Wilflingseder, D; Posch, W; Haybaeck, J.
Machine Learning to Identify Critical Biomarker Profiles in New SARS-CoV-2 Variants.
Microorganisms. 2024; 12(4): Doi: 10.3390/microorganisms12040798 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Haybäck Johannes
Co-Autor*innen der Med Uni Graz
Mangge Harald
Prüller Florian
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The global dissemination of SARS-CoV-2 resulted in the emergence of several variants, including Alpha, Alpha + E484K, Beta, and Omicron. Our research integrated the study of eukaryotic translation factors and fundamental components in general protein synthesis with the analysis of SARS-CoV-2 variants and vaccination status. Utilizing statistical methods, we successfully differentiated between variants in infected individuals and, to a lesser extent, between vaccinated and non-vaccinated infected individuals, relying on the expression profiles of translation factors. Additionally, our investigation identified common causal relationships among the translation factors, shedding light on the interplay between SARS-CoV-2 variants and the host's translation machinery.

Find related publications in this database (Keywords)
SARS-CoV-2
vaccination state
variants
Alpha
Alpha+E484K
Beta
Omicron
z-scores
PC algorithm
precision
recall
F1 score
machine learning
Restricted Boltzmann Machine neural network
© Med Uni Graz Impressum