Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Reiser, E; Bazzano, MV; Solano, ME; Haybaeck, J; Schatz, C; Mangesius, J; Ganswindt, U; Toth, B.
Unlaid Eggs: Ovarian Damage after Low-Dose Radiation.
Cells. 2022; 11(7): Doi: 10.3390/cells11071219 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Haybäck Johannes
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The total body irradiation of lymphomas and co-irradiation in the treatment of adjacent solid tumors can lead to a reduced ovarian function, premature ovarian insufficiency, and menopause. A small number of studies has assessed the radiation-induced damage of primordial follicles in animal models and humans. Studies are emerging that evaluate radiation-induced damage to the surrounding ovarian tissue including stromal and immune cells. We reviewed basic laboratory work to assess the current state of knowledge and to establish an experimental setting for further studies in animals and humans. The experimental approaches were mostly performed using mouse models. Most studies relied on single doses as high as 1 Gy, which is considered to cause severe damage to the ovary. Changes in the ovarian reserve were related to the primordial follicle count, providing reproducible evidence that radiation with 1 Gy leads to a significant depletion. Radiation with 0.1 Gy mostly did not show an effect on the primordial follicles. Fewer data exist on the effects of radiation on the ovarian microenvironment including theca-interstitial, immune, endothelial, and smooth muscle cells. We concluded that a mouse model would provide the most reliable model to study the effects of low-dose radiation. Furthermore, both immunohistochemistry and fluorescence-activated cell sorting (FACS) analyses were valuable to analyze not only the germ cells but also the ovarian microenvironment.

Find related publications in this database (Keywords)
low-dose radiation
ovarian damage
fertility preservation
mouse model
follicle count
oocyte
© Med Uni Graz Impressum