Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Thurner, GC; Haybaeck, J; Debbage, P.
Targeting Drug Delivery in the Elderly: Are Nanoparticles an Option for Treating Osteoporosis?
Int J Mol Sci. 2021; 22(16): Doi: 10.3390/ijms22168932 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Haybäck Johannes
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Nanoparticles bearing specific targeting groups can, in principle, accumulate exclusively at lesion sites bearing target molecules, and release therapeutic agents there. However, practical application of targeted nanoparticles in the living organism presents challenges. In particular, intravasally applied nanoparticles encounter physical and physiological barriers located in blood vessel walls, blocking passage from the blood into tissue compartments. Whereas small molecules can pass out of the blood, nanoparticles are too large and need to utilize physiological carriers enabling passage across endothelial walls. The issues associated with crossing blood-tissue barriers have limited the usefulness of nanoparticles in clinical applications. However, nanoparticles do not encounter blood-tissue barriers if their targets are directly accessible from the blood. This review focuses on osteoporosis, a disabling and common disease for which therapeutic strategies are limited. The target sites for therapeutic agents in osteoporosis are located in bone resorption pits, and these are in immediate contact with the blood. There are specific targetable biomarkers within bone resorption pits. These present nanomedicine with the opportunity to treat a major disease by use of simple nanoparticles loaded with any of several available effective therapeutics that, at present, cannot be used due to their associated side effects.

Find related publications in this database (Keywords)
osteoporosis
nanoparticles
tissue-barriers
Howship's lacuna
targeting
© Med Uni Graz Impressum