Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Meyer, WK; Arbeithuber, B; Ober, C; Ebner, T; Tiemann-Boege, I; Hudson, RR; Przeworski, M.
Evaluating the evidence for transmission distortion in human pedigrees.
Genetics. 2012; 191(1): 215-232. Doi: 10.1534/genetics.112.139576 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Ebner Thomas
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Children of a heterozygous parent are expected to carry either allele with equal probability. Exceptions can occur, however, due to meiotic drive, competition among gametes, or viability selection, which we collectively term "transmission distortion" (TD). Although there are several well-characterized examples of these phenomena, their existence in humans remains unknown. We therefore performed a genome-wide scan for TD by applying the transmission disequilibrium test (TDT) genome-wide to three large sets of human pedigrees of European descent: the Framingham Heart Study (FHS), a founder population of European origin (HUTT), and a subset of the Autism Genetic Resource Exchange (AGRE). Genotyping error is an important confounder in this type of analysis. In FHS and HUTT, despite extensive quality control, we did not find sufficient evidence to exclude genotyping error in the strongest signals. In AGRE, however, many signals extended across multiple SNPs, a pattern highly unlikely to arise from genotyping error. We identified several candidate regions in this data set, notably a locus in 10q26.13 displaying a genome-wide significant TDT in combined female and male transmissions and a signature of recent positive selection, as well as a paternal TD signal in 6p21.1, the same region in which a significant TD signal was previously observed in 30 European males. Neither region replicated in FHS, however, and the paternal signal was not visible in sperm competition assays or as allelic imbalance in sperm. In maternal transmissions, we detected no strong signals near centromeres or telomeres, the regions predicted to be most susceptible to female-specific meiotic drive, but we found a significant enrichment of top signals among genes involved in cell junctions. These results illustrate both the potential benefits and the challenges of using the TDT to study transmission distortion and provide candidates for investigation in future studies.
Find related publications in this database (using NLM MeSH Indexing)
Alleles -
Autistic Disorder - genetics
Centromere - genetics
Cohort Studies -
European Continental Ancestry Group - genetics
Fathers -
Female -
Genomics -
Genotype -
Genotyping Techniques -
Humans -
Inheritance Patterns - genetics
Male -
Meiosis - genetics
Pedigree -
Sperm Motility - genetics
Telomere - genetics

© Med Uni Graz Impressum