Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Egger, J; Pepe, A; Gsaxner, C; Jin, Y; Li, JN; Kern, R.
Deep learning-a first meta-survey of selected reviews across scientific disciplines, their commonalities, challenges and research impact
PEERJ COMPUT SCI. 2021; 7: e773
Doi: 10.7717/peerj-cs.773
Web of Science
FullText
FullText_MUG
- Leading authors Med Uni Graz
-
Egger Jan
- Co-authors Med Uni Graz
-
Schwarz-Gsaxner Christina
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- Deep learning belongs to the field of artificial intelligence, where machines perform tasks that typically require some kind of human intelligence. Deep learning tries to achieve this by drawing inspiration from the learning of a human brain. Similar to the basic structure of a brain, which consists of (billions of) neurons and connections between them, a deep learning algorithm consists of an artificial neural network, which resembles the biological brain structure. Mimicking the learning process of humans with their senses, deep learning networks are fed with (sensory) data, like texts, images, videos or sounds. These networks outperform the state-of-the-art methods in different tasks and, because of this, the whole field saw an exponential growth during the last years. This growth resulted in way over 10,000 publications per year in the last years. For example, the search engine PubMed alone, which covers only a sub-set of all publications in the medical field, provides already over 11,000 results in Q3 2020 for the search term 'deep learning', and around 90% of these results are from the last three years. Consequently, a complete overview over the field of deep learning is already impossible to obtain and, in the near future, it will potentially become difficult to obtain an overview over a subfield. However, there are several review articles about deep learning, which are focused on specific scientific fields or applications, for example deep learning advances in computer vision or in specific tasks like object detection. With these surveys as a foundation, the aim of this contribution is to provide a first high-level, categorized meta-survey of selected reviews on deep learning across different scientific disciplines and outline the research impact that they already have during a short period of time. The categories (computer vision, language processing, medical informatics and additional works) have been chosen according to the underlying data sources In we review the common architectures, methods, pros, cons, evaluations, challenges and future directions for every sub-category.
- Find related publications in this database (Keywords)
-
Deep learning
-
Artificial neural networks
-
Machine learning
-
Data analysis
-
Image analysis
-
Language processing
-
Speech recognition
-
Big data
-
Medical image analysis
-
Meta-review