Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Publikationen

Suchbegriffe: OXIDATION-REDUCTION - DRUG EFFECTS , . Treffer: 23

2021

Thorne, LS; Rochford, G; Williams, TD; Southam, AD; Rodriguez-Blanco, G; Dunn, WB; Hodges, NJ Cytoglobin protects cancer cells from apoptosis by regulation of mitochondrial cardiolipin.
Sci Rep. 2021; 11(1): 985 Doi: 10.1038/s41598-020-79830-w [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

2020

Lord, SR; Collins, JM; Cheng, WC; Haider, S; Wigfield, S; Gaude, E; Fielding, BA; Pinnick, KE; Harjes, U; Segaran, A; Jha, P; Hoefler, G; Pollak, MN; Thompson, AM; Roy, PG; English, R; Adams, RF; Frezza, C; Buffa, FM; Karpe, F; Harris, AL Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin.
Br J Cancer. 2020; 122(2):258-265 Doi: 10.1038/s41416-019-0665-5 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

2019

Radosinska, J; Jasenovec, T; Puzserova, A; Krajcir, J; Lacekova, J; Kucerova, K; Kalnovicova, T; Tothova, L; Kovacicova, I; Vrbjar, N Promotion of whole blood rheology after vitamin C supplementation: focus on red blood cells 1.
Can J Physiol Pharmacol. 2019; 97(9):837-843 Doi: 10.1139/cjpp-2018-0735
Web of Science PubMed FullText FullText_MUG

 

2018

Hager, S; Korbula, K; Bielec, B; Grusch, M; Pirker, C; Schosserer, M; Liendl, L; Lang, M; Grillari, J; Nowikovsky, K; Pape, VFS; Mohr, T; Szakács, G; Keppler, BK; Berger, W; Kowol, CR; Heffeter, P The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition.
Cell Death Dis. 2018; 9(11):1052-1052 Doi: 10.1038/s41419-018-1102-z [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

2014

Stanger, O; Aigner, I; Schimetta, W; Wonisch, W Antioxidant supplementation attenuates oxidative stress in patients undergoing coronary artery bypass graft surgery.
Tohoku J Exp Med. 2014; 232(2):145-154 Doi: 10.1620/tjem.232.145 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG

 

2013

Fischerauer, SF; Kraus, T; Wu, X; Tangl, S; Sorantin, E; Hänzi, AC; Löffler, JF; Uggowitzer, PJ; Weinberg, AM In vivo degradation performance of micro-arc-oxidized magnesium implants: a micro-CT study in rats.
Acta Biomater. 2013; 9(2):5411-5420 Doi: 10.1016/j.actbio.2012.09.017
Web of Science PubMed FullText FullText_MUG

 

Sivakumaran, V; Stanley, BA; Tocchetti, CG; Ballin, JD; Caceres, V; Zhou, L; Keceli, G; Rainer, PP; Lee, DI; Huke, S; Ziolo, MT; Kranias, EG; Toscano, JP; Wilson, GM; O'Rourke, B; Kass, DA; Mahaney, JE; Paolocci, N HNO enhances SERCA2a activity and cardiomyocyte function by promoting redox-dependent phospholamban oligomerization.
Antioxid Redox Signal. 2013; 19(11):1185-1197 Doi: 10.1089/ars.2012.5057 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

2011

Kitz, K; Windischhofer, W; Leis, HJ; Huber, E; Kollroser, M; Malle, E 15-Deoxy-Δ12,14-prostaglandin J2 induces Cox-2 expression in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species.
Free Radic Biol Med. 2011; 50(7):854-865 Doi: 10.1016/j.freeradbiomed.2010.12.039
Web of Science PubMed FullText FullText_MUG

 

Sloan, C; Tuinei, J; Nemetz, K; Frandsen, J; Soto, J; Wride, N; Sempokuya, T; Alegria, L; Bugger, H; Abel, ED Central leptin signaling is required to normalize myocardial fatty acid oxidation rates in caloric-restricted ob/ob mice.
Diabetes. 2011; 60(5): 1424-1434. Doi: 10.2337/db10-1106 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

2004

Olschewski, A; Hong, Z; Peterson, DA; Nelson, DP; Porter, VA; Weir, EK Opposite effects of redox status on membrane potential, cytosolic calcium, and tone in pulmonary arteries and ductus arteriosus.
AMER J PHYSIOL-LUNG CELL M PH 2004 286: L15-L22. Doi: 10.1152/ajplung.00372.2002 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG

 

Wang, X; Greilberger, J; Ledinski, G; Kager, G; Paigen, B; Jürgens, G The hypolipidemic natural product Commiphora mukul and its component guggulsterone inhibit oxidative modification of LDL.
ATHEROSCLEROSIS. 2004; 172: 239-246. Doi: 10.1016/j.atherosclerosis.2003.10.008
Web of Science PubMed FullText FullText_MUG Google Scholar

 

2003

Pussinen, PJ; Metso, J; Keva, R; Hirschmugl, B; Sattler, W; Jauhiainen, M; Malle, E Plasma phospholipid transfer protein-mediated reactions are impaired by hypochlorite-modification of high density lipoprotein.
Int J Biochem Cell Biol. 2003; 35(2):192-202 Doi: 10.1016/S1357-2725(02)00130-9
Web of Science PubMed FullText FullText_MUG Google Scholar

 

Spaniol, M; Kaufmann, P; Beier, K; Wüthrich, J; Török, M; Scharnagl, H; März, W; Krähenbühl, S Mechanisms of liver steatosis in rats with systemic carnitine deficiency due to treatment with trimethylhydraziniumpropionate.
J Lipid Res. 2003; 44(1):144-153 Doi: 10.1194/jlr.M200200-JLR200 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG Google Scholar

 

2001

Fabjan, JS; Abuja, PM; Schaur, RJ; Sevanian, A Hypochlorite induces the formation of LDL(-), a potentially atherogenic low density lipoprotein subspecies.
FEBS LETT 2001 499: 69-72. Doi: 10.1016/S0014-5793(01)02523-6 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG

 

Feichtenhofer, S; Fabjan, JS; Abuja, PM Ceruloplasmin as low-density lipoprotein oxidase: activation by ascorbate and dehydroascorbate.
FEBS LETT 2001 501: 42-46. Doi: 10.1016/S0014-5793(01)02623-0 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG

 

Mayer, B; Schumacher, M; Brandstätter, H; Wagner, FS; Hermetter, A High-throughput fluorescence screening of antioxidative capacity in human serum.
Anal Biochem. 2001; 297(2):144-153 Doi: 10.1006/abio.2001.5333
Web of Science PubMed FullText FullText_MUG

 

Oettl, K; Greilberger, J; Zangger, K; Haslinger, E; Reibnegger, G; Jürgens, G Radical-scavenging and iron-chelating properties of carvedilol, an antihypertensive drug with antioxidative activity.
Biochem Pharmacol. 2001; 62(2):241-248 Doi: 10.1016%2FS0006-2952%2801%2900651-7
Web of Science PubMed FullText FullText_MUG Google Scholar

 

Wang, X; Greilberger, J; Ledinski, G; Kager, G; Jürgens, G Binding and uptake of differently oxidized low density lipoprotein in mouse peritoneal macrophages and THP-1 macrophages: involvement of negative charges as well as oxidation-specific epitopes.
J CELL BIOCHEM 2001 81: 557-569. Doi: 10.1002%2F1097-4644%2820010601%2981%3A3%3C557%3A%3AAID-JCB1069%3E3.0.CO%3B2-T
Web of Science PubMed FullText FullText_MUG Google Scholar

 

1999

Karten, B; Boechzelt, H; Abuja, PM; Mittelbach, M; Sattler, W Macrophage-enhanced formation of cholesteryl ester-core aldehydes during oxidation of low density lipoprotein.
J LIPID RES 1999 40: 1240-1253. Doi: 10.1016/S0022-2275(20)33486-6 [OPEN ACCESS]
Web of Science PubMed FullText FullText_MUG

 

1998

Albertini, R; Abuja, PM Monitoring of low density lipoprotein oxidation by low-level chemiluminescence.
FREE RADICAL RES 1998 29: 75-83. Doi: 10.1080/10715769800300091
Web of Science PubMed FullText FullText_MUG

 

1997

Abuja, PM; Albertini, R; Esterbauer, H Simulation of the induction of oxidation of low-density lipoprotein by high copper concentrations: evidence for a nonconstant rate of initiation.
CHEM RES TOXICOL 1997 10: 644-651. Doi: 10.1021/tx9700073
Web of Science PubMed FullText FullText_MUG

 

1995

Jürgens, G; Fell, A; Ledinski, G; Chen, Q; Paltauf, F Delay of copper-catalyzed oxidation of low density lipoprotein by in vitro enrichment with choline or ethanolamine plasmalogens.
Chem Phys Lipids. 1995; 77(1):25-31 Doi: 10.1016%2F0009-3084%2895%2902451-N
Web of Science PubMed FullText FullText_MUG Google Scholar

 

1980

Hofmann, H; Schmut, O The inability of superoxide dismutase to inhibit the depolymerization of hyaluronic acid by ferrous ions and ascorbate.
A GRAEFES ARCH KLIN EXP OPHTH. 1980; 214(3): 181-185. Doi: 10.1007/BF00414560
Web of Science PubMed FullText FullText_MUG Google Scholar

 

© Med Uni Graz Impressum