Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Whitaker, J; Baum, TE; Qian, P; Prassl, AJ; Plank, G; Blankstein, R; Cochet, H; Sauer, WH; Bishop, MJ; Tedrow, U.
Frequency Domain Analysis of Endocardial Electrograms for Detection of Nontransmural Myocardial Fibrosis in Nonischemic Cardiomyopathy.
JACC Clin Electrophysiol. 2023; Doi: 10.1016/j.jacep.2022.11.019
PubMed FullText FullText_MUG


Co-authors Med Uni Graz
Plank Gernot
Prassl Anton

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

BACKGROUND: Voltage mapping in nonischemic cardiomyopathy can fail to identify midmyocardial substrate for ventricular arrhythmias, an important cause of ablation failure. OBJECTIVES: The aim of this study was to assess whether frequency domain analysis of endocardial left ventricular electrograms (EGMs) can better predict the presence of midmyocardial fibrosis (MMF) compared with voltage amplitude. METHODS: Nonischemic cardiomyopathy patients undergoing ventricular tachycardia ablation with registered preprocedural cardiac computed tomography and late iodine enhancement were included. Presence of fibrosis at each EGM site was assessed. Bipolar and unipolar EGMs were transformed to the frequency domain using multitaper spectral analysis. Singular value decomposition of the EGM frequency spectrum was used within a supervised machine learning process to select features to predict the presence of MMF and compare against predictions using voltage amplitude. RESULTS: Thirteen patients were included (median age 57 years [interquartile range: 28-73 years], median ejection fraction 40% [interquartile range: 15%-57%]). A total of 6,015 EGM pairs were processed: 2,459 EGM pairs in MMF areas and 3,556 EGM pairs in non-MMF areas. Supervised classifiers were trained with stratified k-fold cross-validation within patients. The distribution of mean area under the curve metrics using frequency features, f, was significantly greater than voltage feature area under the curve metrics, v, (mean f = 0.841 [95% CI: 0.789-0.884] vs mean v = 0.591 [95% CI: 0.530-0.658]; P < 0.001), indicating that frequency-trained classifiers better predicted the presence of MMF. CONCLUSIONS: These data indicate the promising discriminatory value of endocardial EGM frequency content in the assessment of concealed myocardial substrate. Further studies are needed to investigate the importance of the specific frequency features identified.

© Med Uni GrazImprint