Selected Publication:
SHR
Neuro
Cancer
Cardio
Lipid
Metab
Microb
Rodero, C; Longobardi, S; Augustin, C; Strocchi, M; Plank, G; Lamata, P; Niederer, SA.
Calibration of Cohorts of Virtual Patient Heart Models Using Bayesian History Matching.
Ann Biomed Eng. 2023; 51(1):241-252
Doi: 10.1007/s10439-022-03095-9
[OPEN ACCESS]
Web of Science
PubMed
FullText
FullText_MUG
- Co-authors Med Uni Graz
-
Augustin Christoph
-
Plank Gernot
- Altmetrics:
- Dimensions Citations:
- Plum Analytics:
- Scite (citation analytics):
- Abstract:
- Previous patient-specific model calibration techniques have treated each patient independently, making the methods expensive for large-scale clinical adoption. In this work, we show how we can reuse simulations to accelerate the patient-specific model calibration pipeline. To represent anatomy, we used a Statistical Shape Model and to represent function, we ran electrophysiological simulations. We study the use of 14 biomarkers to calibrate the model, training one Gaussian Process Emulator (GPE) per biomarker. To fit the models, we followed a Bayesian History Matching (BHM) strategy, wherein each iteration a region of the parameter space is ruled out if the emulation with that set of parameter values produces is "implausible". We found that without running any extra simulations we can find 87.41% of the non-implausible parameter combinations. Moreover, we showed how reducing the uncertainty of the measurements from 10 to 5% can reduce the final parameter space by 6 orders of magnitude. This innovation allows for a model fitting technique, therefore reducing the computational load of future biomedical studies.
- Find related publications in this database (using NLM MeSH Indexing)
-
Humans - administration & dosage
-
Bayes Theorem - administration & dosage
-
Calibration - administration & dosage
-
Heart - administration & dosage
-
Uncertainty - administration & dosage
-
Models, Statistical - administration & dosage
- Find related publications in this database (Keywords)
-
Gaussian process emulator
-
Heart model
-
Statistical shape model
-
Uncertainty quantification
-
In-silico trial
-
Virtual clinical trial