Medizinische Universit├Ąt Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid

Hong, Z; Weir, EK; Varghese, A; Olschewski, A.
Effect of normoxia and hypoxia on K(+) current and resting membrane potential of fetal rabbit pulmonary artery smooth muscle.
Physiol Res. 2005; 54(2):175-184 [OPEN ACCESS]
Web of Science PubMed


Authors Med Uni Graz:
Olschewski Andrea

Dimensions Citations:

Plum Analytics:
At birth, the increase in O(2) tension (pO(2)) is an important cause of the decrease in pulmonary vascular resistance. In adult animals there are impressive interspecies differences in the level of hypoxia required to elicit a pulmonary vasoconstrictor response and in the amplitude of the response. Hypoxic inhibition of some potassium (K(+)) channels in the membrane of pulmonary arterial smooth muscle cells (PASMCs) helps to initiate hypoxic pulmonary vasoconstriction. To determine the effect of the change in pO(2) on fetal rabbit PASMCs and to investigate possible species-dependent differences, we measured the current-voltage relationship and the resting membrane potential, in PASMCs from fetal resistance arteries using the amphotericin-perforated patch-clamp technique under hypoxic and normoxic conditions. Under hypoxic conditions, the K(+) current in PASMCs was small, and could be inhibited by 4-aminopyridine, iberiotoxin and glibenclamide, reflecting contributions by Kv, K(Ca) and K(ATP) channels. The average resting membrane potential was -44.3+/-1.3 mV (n=29) and could be depolarized by 4-AP (5 mM) and ITX (100 nM) but not by glibenclamide (10 microM). Changing from hypoxia, that mimicked fetal life, to normoxia dramatically increased the K(Ca) and consequently hyperpolarized (-9.3+/-1.7 mV; n=8) fetal rabbit PASMCs. Under normoxic conditions K(+) current was reduced by 4-AP with a significant change in resting membrane potential (11.1+/-1.7 mV; n=8). We conclude that resting membrane potential in fetal rabbit PASMCs under both hypoxic and normoxic conditions depends on both Kv and K(Ca) channels, in contrast to fetal lamb or porcine PASMCs. Potential species differences in the K(+) channels that control resting membrane potential must be taken into consideration in the interpretation of studies of neonatal pulmonary vascular reactivity to changes in O(2) tension.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Cell Hypoxia - physiology
Female -
Fetus - physiology
Membrane Potentials - physiology
Muscle, Smooth, Vascular - physiology
Potassium Channels - physiology
Pregnancy -
Pulmonary Artery - physiology
Rabbits -

Find related publications in this database (Keywords)
hypoxic pulmonary vasoconstriction
ion channels
fetal pulmonary
artery smooth muscle
© Med Uni GrazImprint