Medizinische Universität Graz - Research portal

Logo MUG Resarch Portal

Selected Publication:

SHR Neuro Cancer Cardio Lipid Metab Microb

Reiss, MA; Hofmeister, SJ; De Visscher, R; Temmer, M; Veronig, AM; Delouille, V; Mampaey, B; Ahammer, H.
Improvements on coronal hole detection in SDO/AIA images using supervised classification
J SPACE WEATHER SPAC. 2015; 5: A23 Doi: 10.1051/swsc/2015025 [OPEN ACCESS]
Web of Science FullText FullText_MUG

 

Co-authors Med Uni Graz
Ahammer Helmut
Altmetrics:

Dimensions Citations:
Plum Analytics:


Scite (citation analytics):

Abstract:
We demonstrate the use of machine learning algorithms in combination with segmentation techniques in order to distinguish coronal holes and filaments in SDO/AIA EUV images of the Sun. Based on two coronal hole detection techniques (intensity-based thresholding, SPoCA), we prepared datasets of manually labeled coronal hole and filament channel regions present on the Sun during the time range 2011-2013. By mapping the extracted regions from EUV observations onto HMI line-of-sight magnetograms we also include their magnetic characteristics. We computed shape measures from the segmented binary maps as well as first order and second order texture statistics from the segmented regions in the EUV images and magnetograms. These attributes were used for data mining investigations to identify the most performant rule to differentiate between coronal holes and filament channels. We applied several classifiers, namely Support Vector Machine (SVM), Linear Support Vector Machine, Decision Tree, and Random Forest, and found that all classification rules achieve good results in general, with linear SVM providing the best performances (with a true skill statistic of approximate to 0.90). Additional information from magnetic field data systematically improves the performance across all four classifiers for the SPoCA detection. Since the calculation is inexpensive in computing time, this approach is well suited for applications on real-time data. This study demonstrates how a machine learning approach may help improve upon an unsupervised feature extraction method.

Find related publications in this database (Keywords)
Solar wind
Coronal holes
Filament channels
Feature extraction
Supervised Classification
Textural features
© Med Uni GrazImprint