Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid

Scherz, B; Rabl, R; Flunkert, S; Rohler, S; Neddens, J; Taub, N; Temmel, M; Panzenboeck, U; Niederkofler, V; Zimmermann, R; Hutter-Paier, B.
mTh1 driven expression of hTDP-43 results in typical ALS/FTLD neuropathological symptoms.
PLoS One. 2018; 13(5): e0197674-e0197674. [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Autor/innen der Med Uni Graz:
Panzenboeck Ute
Altmetrics:

Dimensions Citations:

Plum Analytics:
Number of Figures: 7
| | | | | | |
Abstract:
Transgenic mouse models are indispensable tools to mimic human diseases and analyze the effectiveness of related new drugs. For a long time amyotrophic lateral sclerosis (ALS) research depended on only a few mouse models that exhibit a very strong and early phenotype, e.g. SOD1 mice, resulting in a short treatment time window. By now, several models are available that need to be characterized to highlight characteristics of each model. Here we further characterized the mThy1-hTDP-43 transgenic mouse model TAR6/6 that overexpresses wild type human TARDBP, also called TDP-43, under control of the neuronal Thy-1 promoter presented by Wils and colleagues, 2010, by using biochemical, histological and behavioral readouts. Our results show that TAR6/6 mice exhibit a strong TDP-43 expression in the hippocampus, spinal cord, hypothalamus and medulla oblongata. Apart from prominent protein expression in the nucleus, TDP-43 protein was found at lower levels in the cytosol of transgenic mice. Additionally, we detected insoluble TDP-43 in the cortex, motoneuron loss, and increased neuroinflammation in the central nervous system of TAR6/6 animals. Behavioral analyses revealed early motor deficits in the clasping- and wire suspension test as well as decreased anxiety in the elevated plus maze. Further motor tests showed differences at later time points compared to non-transgenic littermates, thus allowing the observation of onset and severity of such deficits. Together, TAR6/6 mice are a valuable tool to test new ALS/FTLD drugs that target TDP-43 expression and insolubility, neuroinflammation, motoneuron loss or other TDP-43 related downstream signaling pathways since these mice exhibit a later pathology as previously used ALS/FTLD mouse models.

© Meduni Graz Impressum