Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Kumpitsch, C; Fischmeister, FPS; Mahnert, A; Lackner, S; Wilding, M; Sturm, C; Springer, A; Madl, T; Holasek, S; Högenauer, C; Berg, IA; Schoepf, V; Moissl-Eichinger, C.
Reduced B12 uptake and increased gastrointestinal formate are associated with archaeome-mediated breath methane emission in humans.
Microbiome. 2021; 9(1):193 Doi: 10.1186/s40168-021-01130-w [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Kumpitsch Christina Sarah
Moissl-Eichinger Christine
Co-Autor*innen der Med Uni Graz
Hoegenauer Christoph
Holasek Sandra Johanna
Lackner Sonja
Madl Tobias
Mahnert Alexander
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
BACKGROUND: Methane is an end product of microbial fermentation in the human gastrointestinal tract. This gas is solely produced by an archaeal subpopulation of the human microbiome. Increased methane production has been associated with abdominal pain, bloating, constipation, IBD, CRC or other conditions. Twenty percent of the (healthy) Western populations innately exhale substantially higher amounts (>5 ppm) of this gas. The underlying principle for differential methane emission and its effect on human health is not sufficiently understood. RESULTS: We assessed the breath methane content, the gastrointestinal microbiome, its function and metabolome, and dietary intake of one-hundred healthy young adults (female: n = 52, male: n = 48; mean age =24.1). On the basis of the amount of methane emitted, participants were grouped into high methane emitters (CH4 breath content 5-75 ppm) and low emitters (CH4 < 5 ppm). The microbiomes of high methane emitters were characterized by a 1000-fold increase in Methanobrevibacter smithii. This archaeon co-occurred with a bacterial community specialized on dietary fibre degradation, which included members of Ruminococcaceae and Christensenellaceae. As confirmed by metagenomics and metabolomics, the biology of high methane producers was further characterized by increased formate and acetate levels in the gut. These metabolites were strongly correlated with dietary habits, such as vitamin, fat and fibre intake, and microbiome function, altogether driving archaeal methanogenesis. CONCLUSIONS: This study enlightens the complex, multi-level interplay of host diet, genetics and microbiome composition/function leading to two fundamentally different gastrointestinal phenotypes and identifies novel points of therapeutic action in methane-associated disorders. Video Abstract.
Find related publications in this database (using NLM MeSH Indexing)
Adult - administration & dosage
Animals - administration & dosage
Female - administration & dosage
Formates - administration & dosage
Gastrointestinal Tract - administration & dosage
Humans - administration & dosage
Male - administration & dosage
Metagenomics - administration & dosage
Methane - administration & dosage
Methanobrevibacter - genetics
Rumen - administration & dosage
Young Adult - administration & dosage

Find related publications in this database (Keywords)
Archaeome
Microbiome
Methanogens
Methane
Gut
Gastrointestinal tract
Metabolome
Metagenome
Methanobrevibacter
Christensenellaceae
© Med Uni Graz Impressum