Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Holzer, P.
Neuropeptides, Microbiota, and Behavior.
Int Rev Neurobiol. 2016; 131(12):67-89 Doi: 10.1016/bs.irn.2016.08.005
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Holzer Peter
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Behavior - physiology
Brain - microbiology
Brain - physiology
Humans -
Microbiota - physiology
Neuropeptides - physiology

© Med Uni Graz Impressum