Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid

Hartlmüller, C; Spreitzer, E; Göbl, C; Falsone, F; Madl, T.
NMR characterization of solvent accessibility and transient structure in intrinsically disordered proteins.
J BIOMOL NMR. 2019; 73(6-7): 305-317. [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG


Autor/innen der Med Uni Graz:
Madl Tobias
Spreitzer Emil

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Number of Figures: 4
| | | |
In order to understand the conformational behavior of intrinsically disordered proteins (IDPs) and their biological interaction networks, the detection of residual structure and long-range interactions is required. However, the large number of degrees of conformational freedom of disordered proteins require the integration of extensive sets of experimental data, which are difficult to obtain. Here, we provide a straightforward approach for the detection of residual structure and long-range interactions in IDPs under near-native conditions using solvent paramagnetic relaxation enhancement (sPRE). Our data indicate that for the general case of an unfolded chain, with a local flexibility described by the overwhelming majority of available combinations, sPREs of non-exchangeable protons can be accurately predicted through an ensemble-based fragment approach. We show for the disordered protein α-synuclein and disordered regions of the proteins FOXO4 and p53 that deviation from random coil behavior can be interpreted in terms of intrinsic propensity to populate local structure in interaction sites of these proteins and to adopt transient long-range structure. The presented modification-free approach promises to be applicable to study conformational dynamics of IDPs and other dynamic biomolecules in an integrative approach.

Find related publications in this database (Keywords)
Solvent paramagnetic relaxation enhancement
Intrinsically disordered proteins
Residual structure
© Med Uni Graz Impressum