Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

Krebs, A; Lamy, J; Vinogradov, SN; Zipper, P.
Lumbricus terrestris hemoglobin: a comparison of small-angle x-ray scattering and cryoelectron microscopy data.
Biopolymers. 1998; 45(4):289-298 Doi: 10.1002/(SICI)1097-0282(19980405)45:4<289::AID-BIP3>3.0.CO;2-H
Web of Science PubMed FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Krebs Angelika
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
The quaternary structure of Lumbricus terrestris hemoglobin was investigated by small-angle x-ray scattering (SAXS). Based on the SAXS data from several independent experiments, a three-dimensional (3D) consensus model was established to simulate the solution structure of this complex protein at low resolution (about 3 nm) and to yield the particle dimensions. The model is built up from a large number of small spheres of different weights, a result of the two-step procedure used to calculate the SAXS model. It accounts for the arrangement of 12 subunits in a hexagonal bilayer structure and for an additional central unit of clylinder-like shape. This model provides an excellent fit of the experimental scattering curve of the protein up to h = 1 nm-1 and a nearly perfect fit of the experimental distance distribution function p(r) in the whole range. Scattering curves and p(r) functions were also calculated for low-resolution models based on 3D reconstructions obtained by cryoelectron microscopy (EM). The calculated functions of these models also provide a very good fit of the experimental scattering curve (even at h > 1 nm-1) and p(r) function, if hydration is taken into account and the original model coordinates are slightly rescaled. The comparison of models reveals that both the SAXS-based and the EM-based model lead to a similar simulation of the protein structure and to similar particle dimensions. The essential differences between the models concern the hexagonal bilayer arrangement (eclipsed in the SAXS model, one layer slightly rotated in the EM model), and the mass distribution, mainly on the surface and in the central part of the protein complex.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Freezing -
Hemoglobins - chemistry
Microscopy, Electron - methods
Oligochaeta - metabolism
Protein Conformation -
Scattering, Radiation -

Find related publications in this database (Keywords)
hemoglobin
hexagonal bilayer
Lumbricus
electron microscopy
three-dimensional reconstruction
small-angle x-ray scattering
three-dimensional models
© Med Uni Graz Impressum