Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Wahida, A; Buschhorn, L; Frohling, S; Jost, PJ; Schneeweiss, A; Lichter, P; Kurzrock, R.
The coming decade in precision oncology: six riddles
NAT REV CANCER. 2022; Doi: 10.1038/s41568-022-00529-3
Web of Science PubMed FullText FullText_MUG

 

Co-Autor*innen der Med Uni Graz
Jost Philipp
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
In this Perspective, Wahida et al. consider six riddles in precision oncology that must be solved to achieve better clinical responses to molecular targeted therapies. High-throughput methods to investigate tumour omic landscapes have quickly catapulted cancer specialists into the precision oncology era. The singular lesson of precision oncology might be that, for it to be precise, treatment must be personalized, as each cancer's complex molecular and immune landscape differs from patient to patient. Transformative therapies include those that are targeted at the sequelae of molecular abnormalities or at immune mechanisms, and, increasingly, pathways previously thought to be undruggable have become druggable. Critical to applying precision medicine is the concept that the right combination of drugs must be chosen for each patient and used at the right stage of the disease. Multiple puzzles remain that complicate therapy choice, including evidence that deleterious mutations are common in normal tissues and non-malignant conditions. The host's role is also likely to be key in determining treatment response, especially for immunotherapy. Indeed, maximizing the impact of immunotherapy will require omic analyses to match the right immune-targeted drugs to the individualized patient and tumour setting. In this Perspective, we discuss six key riddles that must be solved to optimize the application of precision oncology to otherwise lethal malignancies.

© Med Uni Graz Impressum