Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

COVIDSurg, Collaborative .
Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score.
Br J Surg. 2021; 108(11): 1274-1292. Doi: 10.1093/bjs/znab183 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Study Group Mitglieder der Med Uni Graz:
Cohnert Tina Ulrike
Eibinger Nicolas
Fediuk Melanie
Kahn Judith
Lumenta David Benjamin
Michelitsch Birgit
Nischwitz Sebastian Philipp
Papinutti Alja
Pau Mauro
Richtig Erika
Seidel Gerald
Srekl-Filzmaier Petra
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.

© Med Uni Graz Impressum