Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid

Schober, R; Waldherr, L; Schmidt, T; Graziani, A; Stilianu, C; Legat, L; Groschner, K; Schindl, R.
STIM1 and Orai1 regulate Ca2+ microdomains for activation of transcription.
Biochim Biophys Acta Mol Cell Res. 2019; 1866(7):1079-1091
Web of Science PubMed FullText FullText_MUG

 

Autor/innen der Med Uni Graz:
Graziani Annarita
Groschner Klaus
Schindl Rainer
Schmidt Tony
Stilianu Clemens
Waldherr Linda
Altmetrics:

Dimensions Citations:

Plum Analytics:
Abstract:
Since calcium (Ca2+) regulates a large variety of cellular signaling processes in a cell's life, precise control of Ca2+ concentrations within the cell is essential. This enables the transduction of information via Ca2+ changes in a time-dependent and spatially defined manner. Here, we review molecular and functional aspects of how the store-operated Ca2+ channel Orai1 creates spatiotemporal Ca2+ microdomains. The architecture of this channel is unique, with a long helical pore and a six-fold symmetry. Energetic barriers within the Ca2+ channel pathway limit permeation to allow an extensive local Ca2+ increase in close proximity to the channel. The precise timing of the Orai1 channel function is controlled by direct binding to STIM proteins upon Ca2+ depletion in the endoplasmic reticulum. These induced Ca2+ microdomains are tailored to, and sufficient for, triggering long-term activation processes, such as transcription factor activation and subsequent gene regulation. We describe the principles of spatiotemporal activation of the transcription factor NFAT and compare its signaling characteristics to those of the autophagy regulating transcription factors, MITF and TFEB. Copyright © 2018 Elsevier B.V. All rights reserved.

Find related publications in this database (Keywords)
STIM1
Orai1
NFAT
TFEB
Microdomains
Ca2+
© Meduni Graz Impressum