Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Logo MUG-Forschungsportal

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid

Edlinger, L; Berger-Becvar, A; Menzl, I; Hoermann, G; Greiner, G; Grundschober, E; Bago-Horvath, Z; Al-Zoughbi, W; Hoefler, G; Brostjan, C; Gille, L; Moriggl, R; Spittler, A; Sexl, V; Hoelbl-Kovacic, A.
Expansion of BCR/ABL1+ cells requires PAK2 but not PAK1.
Br J Haematol. 2017; 179(2):229-241 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Autor/innen der Med Uni Graz:
Al-Zoughbi Wael
Hoefler Gerald
Altmetrics:

Dimensions Citations:

Plum Analytics:
Number of Figures: 6
| | | | | |
Abstract:
The p21-activated kinases (PAKs) are key nodes in oncogenic signalling pathways controlling growth, survival, and motility of cancer cells. Their activity is increased in many human cancers and is associated with poor prognosis. To date, PAK deregulation has mainly been studied in solid tumours, where PAK1 and PAK4 are the main isoforms deregulated. We show that PAK1 and PAK2 are the critical isoforms in a BCR/ABL1+ haematopoietic malignancy. In suspension, leukaemic cells deficient for PAK1 and PAK2 undergo apoptosis, while the loss of either protein is well tolerated. Transfer of medium conditioned by shPAK2- but not shPAK1-expressing leukaemic cells interferes with endothelial cell growth. We found that leukaemic cells produce exosomes containing PAK2. Transfer of isolated exosomes supports endothelial cell proliferation. In parallel, we found that leukaemic cells explicitly require PAK2 to grow towards an extracellular matrix. PAK2-deficient cells fail to form colonies in methylcellulose and to induce lymphomas in vivo. PAK2 might therefore be the critical isoform in leukaemic cells by controlling tumour growth in a dual manner: vascularization via exosome-mediated transfer to endothelial cells and remodelling of the extracellular matrix. This finding suggests that the PAK2 isoform represents a promising target for the treatment of haematological diseases. © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.
Find related publications in this database (using NLM MeSH Indexing)
Animals -
Cell Line, Tumor -
Cell Proliferation -
Endothelial Cells - metabolism
Endothelial Cells - pathology
Exosomes - genetics
Exosomes - metabolism
Exosomes - pathology
Extracellular Matrix - genetics
Extracellular Matrix - metabolism
Extracellular Matrix - pathology
Fusion Proteins, bcr-abl - genetics
Fusion Proteins, bcr-abl - metabolism
Hematologic Neoplasms - genetics
Hematologic Neoplasms - metabolism
Hematologic Neoplasms - pathology
Humans -
Leukemia - genetics
Leukemia - metabolism
Leukemia - pathology
Lymphoma - genetics
Lymphoma - metabolism
Lymphoma - pathology
Mice -
Mice, Inbred NOD -
Neovascularization, Pathologic - genetics
Neovascularization, Pathologic - metabolism
Neovascularization, Pathologic - pathology
p21-Activated Kinases - genetics
p21-Activated Kinases - metabolism

Find related publications in this database (Keywords)
PAK2
BCR/ABL1
CML
lymphoma
p21-activated kinases
exosomes
© Meduni Graz Impressum