Medizinische Universität Graz Austria/Österreich - Forschungsportal - Medical University of Graz

Gewählte Publikation:

SHR Neuro Krebs Kardio Lipid Stoffw Microb

Reicher, A; Harris, AL; Prinz, F; Kiesslich, T; Wei, M; Öllinger, R; Rad, R; Pichler, M; Kwong, LN.
Generation of An Endogenous FGFR2-BICC1 Gene Fusion/58 Megabase Inversion Using Single-Plasmid CRISPR/Cas9 Editing in Biliary Cells.
Int J Mol Sci. 2020; 21(7): 2460 Doi: 10.3390/ijms21072460 [OPEN ACCESS]
Web of Science PubMed PUBMED Central FullText FullText_MUG

 

Führende Autor*innen der Med Uni Graz
Pichler Martin
Reicher Andreas
Co-Autor*innen der Med Uni Graz
Prinz Felix
Altmetrics:

Dimensions Citations:

Plum Analytics:

Scite (citation analytics):

Abstract:
Fibroblast growth factor receptor 2 (FGFR2) gene fusions are bona fide oncogenic drivers in 10-15% of intrahepatic cholangiocarcinoma (CCA), yet currently there are no cell lines publically available to study endogenous FGFR2 gene fusions. The ability of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 to generate large yet precise chromosomal rearrangements has presented the possibility of engineering endogenous gene fusions for downstream studies. In this technical report, we describe the generation of an endogenous FGFR2-Bicaudal family RNA binding protein 1 (BICC1) fusion in multiple independent cholangiocarcinoma and immortalized liver cell lines using CRISPR. BICC1 is the most common FGFR2 fusion partner in CCA, and the fusion arises as a consequence of a 58-megabase-sized inversion on chromosome 10. We replicated this inversion to generate a fusion product that is identical to that seen in many human CCA. Our results demonstrate the feasibility of generating large megabase-scale inversions that faithfully reproduce human cancer aberrations.

Find related publications in this database (Keywords)
CRISPR
cholangiocarcinoma
FGFR2
fusion
inversion
© Med Uni Graz Impressum